
Unified Approach for Performance Evaluation and Debug of

System on Chip at Early Design Phase

Nishit Gupta, Sunil Alag
R&D in Electronics Group, Department of Electronics & Information Technology
Ministry of Communications and Information Technology, Government of India

New Delhi, India

Abstract—This paper proposes a novel approach for System

Level Debug and Performance Evaluation that exploits the signal

level and clock cycle accuracy existing in Bus Cycle Accurate

hardware IP models along with the advantages of untimed

Transaction Level Modeling. The developed toolset can be

integrated in SoC simulations in a nonintrusive manner which

secretly embeds performance figures and debug information in

dumped simulation database at signal and transaction level.

Proposed approach suggests modeling the SoC components with

only functional accuracy in which the computational delays are

added using the timing features provided by event based

SystemC kernel. The components are modeled with clock cycle

and signal level accuracy at the interface. Profiling results shows

that the proposed approach outperforms several state-of-art

methodologies in terms accuracy, adaptability and simulation

speed by an order of magnitude of 102. The developed toolset can

effectively be used in a co-simulation environment with IPs at

different abstraction levels.

Keywords— AXI; Bus Cycle Accurate; Latency; SystemC;

System on Chip; Transactional Level Modelling

I. INTRODUCTION

Traditionally, RTL is the de-facto standard for optimizing
the architecture of System on Chip to meet the desired
performance. Only after the RTL of SoC is made available, the
System Architects start extracting the performance figures
from SoC simulations. The SoC RTL is also deployed for
extracting Power figures and running embedded software for
verification purpose. Considering the huge delay that occurs in
writing the complex register-accurate, clock-cycle accurate and
bus-cycle accurate RTL IP models and high simulation time,
many efforts has been made [4, 5, 6, 8] in the last decade to
raise the abstraction level of SoC modeling for making
available a lighter version of SOC for System Architects
capable to be exploited for performance evaluation.
Transactional level modeling, arguably, is the best approach for
running the embedded system-level software for functional
verification but being approximately-timed with no bus-cycle
accuracy, such models cannot be deployed for performance
estimation of SoC. Bus Cycle Accurate IP models with
functional part modeled at Transaction Level (TLM) with
approximate timings and Bus communication part modeled at
signal level can be effectively used for Performance evaluation.
SystemC, which is a C++ class library, specifically designed
for hardware modeling, can be used efficiently for developing
such BCA IP models as it provides timing notion, hardware
data-types and thread library. It also provides other C++

features like polymorphism and inheritance which can be
exploited to developed re-configurable IP models.

In this paper, an approach to extract performance figure like
latency, bandwidth, throughput, occupancy, opcode table from
SoC simulation is proposed. The toolset developed, secretly
converts the signals into transactions and adds debug
information which can be used for finding ambiguous behavior
in simulation. It also dumps the traffic characterization file
which can be used to provide stimulus to initiator IPs in the
absence of RTL. It allows a system designer to take system
level design decisions in very early stages of system design and
hence avoiding redesign efforts and performance bottlenecks in
advanced stages of a project. Another advantage is the fast
simulation speed of such models enabling running many use
cases in a short span of time in comparison to RTL.

II. RELATED WORK

While the concept of deploying Bus Cycle Accurate IP
models for performance estimation is not new, to the best of
our knowledge, this is the first implementation of a complete
system level mixed flow exploiting the advantages of
Transactional Level methodology and Bus Cycle Accurate
models both, in a co-simulation environment with IPs at
multiple abstraction levels. The proposed approach not only
provides a toolset to extract performance figure out of the
TLM-BCA models but also provides necessary debug
information at transactional level. There have been similar
works in the literature which talk about software architecture
platforms implementing a flow exploiting Bus Cycle Accurate
abstraction level for performance estimation of a specific IP or
sub-system [1, 4, 12] but they did not leverage the advantages
of high simulation speed provided by TLM models deployed
with accurate BCA models. Further, in the absence of any
debug features available at signal level BCA flow currently
used commercially or for research purpose, it’s very hard to
debug the complete system which raises a certain doubt on the
results obtained from of such approaches.

III. SYSTEMC AS A MODELING LANGUAGE AT MULTIPLE

ABSTRATIONS LEVEL

The functionality of any hardware IP can be broadly
classified in computation phase and communication phase.
While in computation phase, the IP could be reading/writing
the data, waiting/generating an event/interrupt or doing no
operation. The computation phase of IP can be modeled using
event based synchronization, wait and notify calls provided by

978-1-4673-7948-9/15/$31.00 ©2015 IEEE

SystemC kernel[3, 11, 13]. To model the communication delay,
IP is modeled with accuracy at signal boundary acting on clock
trigger. As the computation phase is modeled using few
SystemC calls rather than the complete combinational logic
acting on the trigger of clock, the context switches taking place
are very low in number and thus a high speed is obtained using
this approach. An important step in performance simulations is
modelling the IP behaviour for a given usecase. It is desired
that IP modelling could be done as quickly as possible (for its
different modes). In many cases IP’s or its software drivers are
not available at the time of interconnect freeze, thus using the
actual IP for analysis is not possible. Following section briefly
describes an efficient IP modelling example relying on data in
IP data sheets like bandwidth, opcode used, latency etc. The
modelling is done for an IP which generates a constant average
b/w. After reset it starts reading data from the DDR interface at
a frequency of 1000 MHz and reading 64 bytes on each clock
which is the data bus size of AXI bus. After reading 5120 bytes
the IP will come to stall. Traffic characterization file, as in Fig.
1, is provided as input to automatically generated BCA models
of Bus Masters to produce realistic traffic on interconnect.
Further, Smart Pointer in SCV Library, as in Fig. 2, provides a
probability distribution curve as in Fig. 3

Fig. 1. Input configuration file for trafic characterization

Fig. 2. SystemC Verification Library (SCV): Smart pointer for randomization

Fig. 3. Probability Distribution obatined from SCV Smart pointer

•

•

Fig. 4. Tracing internal signals with SystemC

Fig. 5. SyPerf connections with internal signals in Sysperf.cfg

 SystemC provides a mechanism [9] to dump internal
variables and interface signals and port values in VCD format
as shown in Fig. 4. The performance figures and debug
information is computed at the simulation time and is dumped
in the simulation database at signal level or transaction level
which can be viewed in graphical viewer like Simvision.

IV. PLATFORM GENERATION

The platform can be generated and assembled automatically
using the in-house developed GUI SoCKit. A typical TV SoC
assembled through SoCKit looks as shown in Fig. 6. The
analyzer tool “SysPerf” developed in-house is used to extract
performance figures and is enabled through a configuration file
sysperf.cfg as shown in Fig. 5 which expects the complete
hierarchy of SystemC signals to be specified in cfg file where
the probing has to be performed.

V. SIMULATION AND ANALYSIS METHOD

Performance simulation platform namely SAP, as shown in
Fig. 7, consists of the following modules:

a) SOC interconnect BCA model in SystemC

b) Memory controller and memory models (in HDL)
instantiated at the target ports of the interconnect model
wrapped in a top level systemC file (to enable co-
simulation)

Fig. 6. A typical interconnect

$IP_NAME D_MAC
$IP_INTERFACE AXI
$IP_FIFO_SIZE 2048
$IP_FREQ 1000MHz
##------------------- 1 --------------------------------------
Description: wait for the system to initialize
##--
$PROCESS_NAME init
$PROCESS_SEQ NOP 500ns
##------------------- 2 --------------------------------------
Description: read from random address locations
##--
$PROCESS_NAME read_from_DDR
$PROCESS_OPC READ
$PROCESS_ADDR {0x0~0x50}=40;{0x60~0x90}=60
$PROCESS_DATA_LENGTH 512*10

$PROCESS_PEAK_BANDWIDTH 100MBps

scv_bag<pair<int,int> > addr;
addr.add(pair<int,int>(0x10,0x50), 20);
addr.add(pair<int,int>(0x50,0x90), 80);
scv_smart_ptr<int> ptr;
ptr->set_mode(addr);
ptr->next();

sc_trace_file *ptr;
ptr=sc_create_vcd_trace_file("wave");
sc_trace(clock,clk,"clk");
sc_trace(input,din,"din");
sc_trace(output,dout,"dout");
sc_close_vcd_trace_file(ptr);

.clk(“sc_main.TOP.MES_RTL_SHELL.clk_stbus”) \

.req(“sc_main.TOP.MES_RTL_SHELL.targ_req”) \

.gnt(“sc_main.TOP.MES_RTL_SHELL.targ_gnt”) \

.id(“sc_main.TOP.MES_RTL_SHELL.targ_id “) \
.record(on) .bus_size(64 .perf(on) .debug(on) |
.prt_check(on)

Fig. 7. Software Architecture Platform (SAP)

Fig. 8. Performance Simulation Flow

c) Generic traffic generator model (in System C)
instantiated at the initiator ports of interconnect top level

d) Collection of traffic generator configurations (called
“application” for a given use case) mapped to the
corresponding system C file at the top level.

 Once the platform and applications are created, the next
step is simulation and analysis. A standard simulation tool
(cadence ncsim) is used for simulation and SysPerf is used for
analysis. SysPerf is enabled by following steps:

a) Set the name of output database

setenv SYSPERF_TX_DB waves

b) Set the probing file

setenv SYSPERF_CONFIG sysperf_config.cfg

c) Set the installed library path

setenv SYSPERF_LIB_PATH <installation path>

d) Dynamic analysis flow is added to an existing simulation
non-intrusively. The elaboration command of cadence IUS
simulation should be modified to load the Sysperf library.

ncelab –loadsc top_ncsc.so sc_main <options>

ncelab –loadsc top_ncsc.so -loadsc
${SYSPERF_LIB_PATH}/lib/libsysperf.so sc_main
dynamic_perf_top <options>

e) The simulation is run by command below:

ncsim sc_main <various_options>

Fig. 8 shows the steps involved in performance simulations
and analysis. Interconnect design, simulation platform and
traffic generator models and applications are created after the
SOC architecture specification is ready. Platform simulation is
then carried out which gives the waveform VCD dumps for
subsequent analysis. If the traffic generator models and
applications are ok, this step simulates the system traffic for a
given use case. There are two kinds of simulation dumps
created, i.e. “fifo_analysis.vcd” and “simulation.vcd”.
“fifo_analysis.vcd” gives the initiator internal FIFO levels. As
shown (Fig.9, arrow 1) the IP starts filling the internal FIFO
very late due to which it remained blocked as no request can be
generated on interconnect and after that, it produces data at a
very high rate. Due to the high latency of the system, the FIFO
gone overflow (Fig. 9, arrow 2) as interconnect is not accepting
requests. Simulation results clearly show that the FIFO level
and rate of production of data inside IP needs to be re-
programmed. SysPerf tool analysis on simulation.vcd gives
vital information like bandwidth and latencies for a given IP
(and at different levels inside interconnect) which are very
useful for identifying the issues in the interconnect design and
also to find the right arbitration parameters and bottlenecks. As
an output, SysPerf also provides performance log as well as
transactional dump, with debugging information embedded in
it, out of the interface signals. SysPerf can also be executed on
the simulation dump produced post-simulation to extract
performance log and transactional database for debugging.

Fig. 9. Simvision display of fifo_analysis.vcd

Fig. 10. performance figures produced by SysPerf

The probing tool extracts performance log as shown in Fig.
11 from the simulation.vcd file. The average Bandwidth
obtained from the first simulation run of SoC BCA models
when compared with actual SoC RTL simulation shows a
relative error of 6.74%. This reflects a very high accuracy as
compared to spreadsheet analysis or high level C++ simulation
results. It is essential to correlate the predicted performance
with real performance figures measured on the silicon device
refine the models later. SysPerf tool also provides rough
estimates of power figures in text format and VCD file

Fig. 11. Performance log

Fig. 12. Transactional database produced out of signals for debugging

associated with communication phase of IP as shown in Table
I. The total power consumed at any instance of time is the sum
of the power consumed by both the threads as shown in Fig.
13. From the results it was educated that the core used
considerable power while doing read operations.

TABLE I. ROUGH POWER DISSIPATED WITH COMMUNICATION PHASES

PHASE POWER DISSIPATED

IDLE
NOP
COMPUTE
READ
WRITE

0.145280W
0.3W
0.7W
0.4W
0.009999999983W

Fig. 13. Power Estimation Flow

PERFORMANCE LOG
Simulation duration: 189700000 fs
Clock period: 10000000 fs
AXI3 Frequency: 100 Mhz

LATENCY
Name Min Max Avg
awvalid to awready 0 0 0
arvalid to arready 45 45 45
 rvalid to reready 5 5 5

AXI3 PIPELINE
Name Min Max Avg
Burst Pipeline 2 2 2
Beat Pipeline 4 4 4

AXI3 OPCODE TABLE
Opcode_table with byte Enable
Load 1 Byte (1 bytes *3) = 3 bytes(0.68%)
Store 1 Byte (1 bytes *2) = 2 bytes(0.45%)
Load 2 Bytes(2 bytes *11) = 22 bytes(5%)

 ………..
Number of Bytes Stored 443

BANDWIDTH
Max. Available Bandwidth 40MB/s
Min. Available Bandwidth 8 MB/s

VI. SIMULATION RESULTS ANALYSIS

The performance simulation step helps to identify and
analyse major issues in the interconnect design, some of the
experiences from interconnect design and performance
simulations of VISTA SOC have been captured in this section.

a) Impact of “reducing latency on processor path”

As shown in Fig. 14 and Fig. 15, the small change of
replacing the “Fconv” (frequency converter) with buffer gives
an improvement of around 28 cycle’s latency (14%) which is
significant as it falls in the processor path. Note that, there was
a constraint of “no frequency above 266 MHz at top level” in
this SOC. If this constraint could be changed to higher
frequencies, better latency numbers are possible.

b) Impact of “change in Topology”

The interconnect topology plays an important role in
system performance and how fast we can arrive at the final
working arbitration policies/tuning. The Node (Bus
component) provides several kind of arbitration policies like,
fixed priority by position, programmable fixed priority, Least
recently used (LRU), bandwidth limiters etc. The LRU
scheme ensures that all the initiators connected to the node get
the “equal” share of bandwidth. “Equal” is not always “Fair”
for a system like TV where there are numerous IP’s with
different bandwidth requirements. Selecting the right
arbitration policy and tuning becomes a very tedious and time
consuming step if the SOC interconnect is big. From number
of iterations of performance simulations it was observed that it
is better to identify IP’s with similar bandwidth requirements
and club them together (and put LRU arbitration scheme).
Another major concern is the latencies for the Processors
paths. Analysis and tuning of interconnect becomes very
difficult if the packets coming from other initiators clients
mixed with the processor transactions. There can be issues
where packets from the processors cannot pass faster just
because there are packets from other clients still waiting in
interconnect. Tuning for arbitration at different levels in
interconnects become very complicated. It was therefore
observed that, for best results we should arbitrate the
processor paths with other clients “as late as possible” as
shown in Fig. 16 and Fig. 18.

Fig. 14. Initial implementation(Total round trip latency i.e. for “req” to

“r_eop” 188 cycles of 450 MHz clk (average))

c) Impact of “outstanding requests capability of IPs”

As the SOC complexity increases, the system latencies
also grow proportionally. If an IP’s capability to generate
outstanding requests is limited, there is a direct impact on how
much BW the IP can get to access the memory resources. If
the IP is able to launch multiple outstanding requests into
interconnect, the impact of high latencies are compensated. On
running performance simulations for the SOC it was
discovered that the 3D graphics IP was not hitting its
bandwidth requirement. On further analysis it was observed
that it is able to generate only one outstanding (each for RD
and WR). As the IP generated LD/ST32’s and the system
average latency was around 200 cycles @ 200 MHz. So the
maximum BW possible is 64 MB/s. Even if the Interconnect
and DDR subsystem are able to sustain much larger
bandwidths (in the range of GB/s); the IP could not utilize it
effectively. Even if we tune/modify the interconnect/DDR
controller and reduce the latency by half still the maximum
achievable BW will be around 128 MB/s which is way behind
what is expected. IP in the standalone could do much faster as
the latency in the standalone environment is very low. But in a
complex SOC for TV applications, it is impossible to achieve
very low latency numbers for all IP’s. So the only solution is
to modify the IP to be able to launch more outstanding
(increasing its internal pipe capability).

d) Impact of “space between requests”

IP’s which have an average kind of BW requirement can
have their requests spread out so that it is beneficial for the
system BW. it is better if such IPs does not generate a “Peaky”
b/w when all the blocks in the SOC are active. To achieve this,
the requests generated by such IPs are “spaced” by a
programmable parameter. Note that, this parameter need to
change when the load on the DDR BW changes. The optimum
value for this parameter can be derived only after running
performance simulations for different use cases.

VII. FURTHER WORK

Migration of developed toolset for advanced interconnect
architectures like ARM AMBA4 (ACE) is in progress with a
completed automated flow. Efforts are being made to leverage
the advantages of IPXACT standard to automate the flow from

Fig. 15. corrected implementation (Total round trip latency i.e. for “req” to
“r_eop” 160 cycles of 450 MHz clk (average))

Fig. 16. Initial Design

IP data sheet to behaviour models. Migrating to TLM 2.0
standard might be a further step to introduce interoperability
of models with similar models from other vendors.

VIII. CONCLUSION

As the complexity of modern SOCs is increasing, the
bandwidth estimation and analysis is becoming more and
more complicated. Conventional methods of spreadsheet
analysis are necessary but not sufficient to predict the system
behaviour, more specifically in modern SOC which
implements various kinds of functionalities which generate
different kinds of traffic in the system. The proposed
methodology for performance evaluation along with debug
features embedded has several advantages, as shown in Fig.
17, over existing solutions like Emulation, RTL etc can be
conveniently adopted in early SOC design phase.

Fig. 17. Comparison of proposed methodology with existing flows

IX. REFERENCES

[1] Gupta, R. and De Micheli, G., "Hardware/Software Co-design", IEEE
Proceedings, Vol 85, No.3, March 1997, pp. 349-365

Fig. 18. Suggested Design

[2] K. Lahiri “Fast Performance Analysis of Bus-Based System-On-Chip
Communication Architectures”. Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design (ICCAD),
November 1999, pp 566-572

[3] Pasricha, S. “Transaction level modeling of SoC with SystemC 2.0” in
Synopsys Users Group Conference (SNUG), 2002

[4] A. Clouard et al., “Towards Bridging the Precision Gap between SoC
Transactional and Cycle Accurate Levels”, in Proc. of Design,
Automation and Test in Europe Conf., 2002

[5] L. Cai and D. Gajski, “Transaction Level Modeling: An Overview,” in
Proc. of Int’l Conf. Hardware/Software Codesign and System
Synthesis”, Newport Beach, CA, USA, 2003, pp. 19-24

[6] O. Ogawa et al., "A practical approach for bus architecture optimization
at transaction level", in Proc. of Design, Automation and Test in Europe
Conf., 2003, pp. 176-181

[7] M. Caldari et al., “Transaction-level models for AMBA bus architecture
using SystemC 2.0”, in Proc. of Design, Automation and Test in Europe
Conf., 2003, pp. 26-31

[8] H. Jang et al., “High-Level System Modeling and Architecture
Exploration with SystemC on a Network SoC: S3C2510 Case Study”, in
Proc. of Design, Automation and Test in Europe Conf., 2004, pp. 538-
543

[9] D.C. Black and J. Donovan, SystemC: From theGround Up, Springer-
Verilag New York, Inc., 2005

[10] W. Klingauf. “Systematic Transaction Level Modeling of Embedded
Systems with SystemC”, in Proc. of Design, Automation and Test in
Europe Conf., 2005, pp. 566-567

[11] F. Ghenassia., Transaction-Level Modeling with SystemC: TLM
Concepts and Applications for Embedded Systems. Springer, 2006

[12] Cornet, J., Maraninchi, F. and Maillet-Contoz, L., “A Method for the
Efficient Development of Timed and Untimed Transaction-Level
Models of Systems-on-Chip” in Proc. Of Design, Automation and Test
in Europe, 2008, pp. 9-14

[13] Accellera Systems Initiative, “SystemC”, 2012, available at
https://www.systemc.org

