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Abstract—This paper proposes a novel approach for System 

Level Debug and Performance Evaluation that exploits the signal 

level and clock cycle accuracy existing in Bus Cycle Accurate 

hardware IP models along with the advantages of untimed 

Transaction Level Modeling. The developed toolset can be 

integrated in SoC simulations in a nonintrusive manner which 

secretly embeds performance figures and debug information in 

dumped simulation database at signal and transaction level. 

Proposed approach suggests modeling the SoC components with 

only functional accuracy in which the computational delays are 

added using the timing features provided by event based 

SystemC kernel. The components are modeled with clock cycle 

and signal level accuracy at the interface. Profiling results shows 

that the proposed approach outperforms several state-of-art 

methodologies in terms accuracy, adaptability and simulation 

speed by an order of magnitude of 102. The developed toolset can 

effectively be used in a co-simulation environment with IPs at 

different abstraction levels. 

Keywords— AXI; Bus Cycle Accurate; Latency; SystemC; 

System on Chip; Transactional Level Modelling 

I.  INTRODUCTION 

Traditionally, RTL is the de-facto standard for optimizing 
the architecture of System on Chip to meet the desired 
performance. Only after the RTL of SoC is made available, the 
System Architects start extracting the performance figures 
from SoC simulations. The SoC RTL is also deployed for 
extracting Power figures and running embedded software for 
verification purpose. Considering the huge delay that occurs in 
writing the complex register-accurate, clock-cycle accurate and 
bus-cycle accurate RTL IP models and high simulation time, 
many efforts has been made [4, 5, 6, 8] in the last decade to 
raise the abstraction level of SoC modeling for making 
available a lighter version of SOC for System Architects 
capable to be exploited for performance evaluation. 
Transactional level modeling, arguably, is the best approach for 
running the embedded system-level software for functional 
verification but being approximately-timed with no bus-cycle 
accuracy, such models cannot be deployed for performance 
estimation of SoC. Bus Cycle Accurate IP models with 
functional part modeled at Transaction Level (TLM) with 
approximate timings and Bus communication part modeled at 
signal level can be effectively used for Performance evaluation. 
SystemC, which is a C++ class library, specifically designed 
for hardware modeling, can be used efficiently for developing 
such BCA IP models as it provides timing notion, hardware 
data-types and thread library.  It also provides other C++ 

features like polymorphism and inheritance which can be 
exploited to developed re-configurable IP models. 

In this paper, an approach to extract performance figure like 
latency, bandwidth, throughput, occupancy, opcode table from 
SoC simulation is proposed. The toolset developed, secretly 
converts the signals into transactions and adds debug 
information which can be used for finding ambiguous behavior 
in simulation. It also dumps the traffic characterization file 
which can be used to provide stimulus to initiator IPs in the 
absence of RTL. It allows a system designer to take system 
level design decisions in very early stages of system design and 
hence avoiding redesign efforts and performance bottlenecks in 
advanced stages of a project. Another advantage is the fast 
simulation speed of such models enabling running many use 
cases in a short span of time in comparison to RTL. 

II. RELATED WORK 

While the concept of deploying Bus Cycle Accurate IP 
models for performance estimation is not new, to the best of 
our knowledge, this is the first implementation of a complete 
system level mixed flow exploiting the advantages of 
Transactional Level methodology and Bus Cycle Accurate 
models both, in a co-simulation environment with IPs at 
multiple abstraction levels. The proposed approach not only 
provides a toolset to extract performance figure out of the 
TLM-BCA models but also provides necessary debug 
information at transactional level. There have been similar 
works in the literature which talk about software architecture 
platforms implementing a flow exploiting Bus Cycle Accurate 
abstraction level for performance estimation of a specific IP or 
sub-system [1, 4, 12] but they did not leverage the advantages 
of high simulation speed provided by TLM models deployed 
with accurate BCA models. Further, in the absence of any 
debug features available at signal level BCA flow currently 
used commercially or for research purpose, it’s very hard to 
debug the complete system which raises a certain doubt on the 
results obtained from of such approaches. 

III. SYSTEMC AS A MODELING LANGUAGE AT MULTIPLE 

ABSTRATIONS LEVEL 

The functionality of any hardware IP can be broadly 
classified in computation phase and communication phase. 
While in computation phase, the IP could be reading/writing 
the data, waiting/generating an event/interrupt or doing no 
operation. The computation phase of IP can be modeled using 
event based synchronization, wait and notify calls provided by 
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SystemC kernel[3, 11, 13]. To model the communication delay, 
IP is modeled with accuracy at signal boundary acting on clock 
trigger. As the computation phase is modeled using few 
SystemC calls rather than the complete combinational logic 
acting on the trigger of clock, the context switches taking place 
are  very low in number and thus a high speed is obtained using 
this approach. An important step in performance simulations is 
modelling the IP behaviour for a given usecase. It is desired 
that IP modelling could be done as quickly as possible (for its 
different modes). In many cases IP’s or its software drivers are 
not available at the time of interconnect freeze, thus using the 
actual IP for analysis is not possible. Following section briefly 
describes an efficient IP modelling example relying on data in 
IP data sheets like bandwidth, opcode used, latency etc. The 
modelling is done for an IP which generates a constant average 
b/w. After reset it starts reading data from the DDR interface at 
a frequency of 1000 MHz and reading 64 bytes on each clock 
which is the data bus size of AXI bus. After reading 5120 bytes 
the IP will come to stall. Traffic characterization file, as in Fig. 
1, is provided as input to automatically generated BCA models 
of Bus Masters to produce realistic traffic on interconnect. 
Further, Smart Pointer in SCV Library, as in Fig. 2, provides a 
probability distribution curve as in Fig. 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Input configuration file for trafic characterization 

 

 

 

 

 

Fig. 2. SystemC Verification Library (SCV): Smart pointer for randomization 

 

Fig. 3. Probability Distribution obatined from SCV Smart pointer 
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Fig. 4. Tracing internal signals with SystemC 

 

 

 

Fig. 5. SyPerf connections with internal signals in Sysperf.cfg 

 SystemC provides a mechanism [9] to dump internal 
variables and interface signals and port values in VCD format 
as shown in Fig. 4. The performance figures and debug 
information is computed at the simulation time and is dumped 
in the simulation database at signal level or transaction level 
which can be viewed in graphical viewer like Simvision. 

IV. PLATFORM GENERATION 

The platform can be generated and assembled automatically 
using the in-house developed GUI SoCKit. A typical TV SoC 
assembled through SoCKit looks as shown in Fig. 6. The 
analyzer tool “SysPerf” developed in-house is used to extract 
performance figures and is enabled through a configuration file 
sysperf.cfg as shown in Fig. 5 which expects the complete 
hierarchy of SystemC signals to be specified in cfg file where 
the probing has to be performed. 

V. SIMULATION AND ANALYSIS METHOD 

Performance simulation platform namely SAP, as shown in 
Fig. 7, consists of the following modules: 

a) SOC interconnect BCA model in SystemC 

b) Memory controller and memory models (in HDL) 
instantiated at the target ports of the interconnect model 
wrapped in a top level systemC file (to enable co-
simulation) 

 

Fig. 6. A typical interconnect 

$IP_NAME                       D_MAC 
$IP_INTERFACE             AXI 
$IP_FIFO_SIZE               2048 
$IP_FREQ                       1000MHz 
##------------------- 1 -------------------------------------- 
##  Description: wait for the system to initialize 
##------------------------------------------------------------ 
$PROCESS_NAME         init 
$PROCESS_SEQ            NOP 500ns 
##------------------- 2 -------------------------------------- 
##  Description: read from random address locations 
##------------------------------------------------------------ 
$PROCESS_NAME       read_from_DDR 
$PROCESS_OPC         READ 
$PROCESS_ADDR     {0x0~0x50}=40;{0x60~0x90}=60 
$PROCESS_DATA_LENGTH      512*10 

$PROCESS_PEAK_BANDWIDTH    100MBps 

scv_bag<pair<int,int> > addr; 
addr.add(pair<int,int>(0x10,0x50), 20); 
addr.add(pair<int,int>(0x50,0x90), 80); 
scv_smart_ptr<int> ptr; 
ptr->set_mode(addr); 
ptr->next(); 

 

sc_trace_file *ptr;                            
ptr=sc_create_vcd_trace_file("wave");          
sc_trace(clock,clk,"clk");                       
sc_trace(input,din,"din"); 
sc_trace(output,dout,"dout");                          
sc_close_vcd_trace_file(ptr);                 

.clk(“sc_main.TOP.MES_RTL_SHELL.clk_stbus”) \        

.req(“sc_main.TOP.MES_RTL_SHELL.targ_req”)   \ 

.gnt(“sc_main.TOP.MES_RTL_SHELL.targ_gnt”)   \ 
        ....... 
.id(“sc_main.TOP.MES_RTL_SHELL.targ_id “)      \ 
.record(on) .bus_size(64 .perf(on) .debug(on)  | 
.prt_check(on) 

 



 

Fig. 7. Software Architecture Platform (SAP) 

 

Fig. 8. Performance Simulation Flow 

c) Generic traffic generator model (in System C) 
instantiated at the initiator ports of interconnect top level  

d) Collection of traffic generator configurations (called 
“application” for a given use case) mapped to the 
corresponding system C file at the top level.  

 Once the platform and applications are created, the next 
step is simulation and analysis. A standard simulation tool 
(cadence ncsim) is used for simulation and SysPerf is used for 
analysis. SysPerf is enabled by following steps: 

a) Set the name of output database 

setenv SYSPERF_TX_DB waves 

b) Set the probing file 

setenv SYSPERF_CONFIG sysperf_config.cfg 

c) Set the installed library path 

setenv SYSPERF_LIB_PATH <installation path> 

d) Dynamic analysis flow is added to an existing simulation 
non-intrusively. The elaboration command of cadence IUS 
simulation should be modified to load the Sysperf library. 

ncelab –loadsc top_ncsc.so sc_main <options> 
 
 

ncelab –loadsc top_ncsc.so -loadsc 
${SYSPERF_LIB_PATH}/lib/libsysperf.so  sc_main 
dynamic_perf_top <options> 

e) The simulation is run by command below: 

ncsim sc_main <various_options> 
 

Fig. 8 shows the steps involved in performance simulations 
and analysis. Interconnect design, simulation platform and 
traffic generator models and applications are created after the 
SOC architecture specification is ready. Platform simulation is 
then carried out which gives the waveform VCD dumps for 
subsequent analysis. If the traffic generator models and 
applications are ok, this step simulates the system traffic for a 
given use case. There are two kinds of simulation dumps 
created, i.e. “fifo_analysis.vcd” and “simulation.vcd”. 
“fifo_analysis.vcd” gives the initiator internal FIFO levels. As 
shown (Fig.9, arrow 1) the IP starts filling the internal FIFO 
very late due to which it remained blocked as no request can be 
generated on interconnect and after that, it produces data at a 
very high rate. Due to the high latency of the system, the FIFO 
gone overflow (Fig. 9, arrow 2) as interconnect is not accepting 
requests. Simulation results clearly show that the FIFO level 
and rate of production of data inside IP needs to be re-
programmed. SysPerf tool analysis on simulation.vcd gives 
vital information like bandwidth and latencies for a given IP 
(and at different levels inside interconnect) which are very 
useful for identifying the issues in the interconnect design and 
also to find the right arbitration parameters and bottlenecks. As 
an output, SysPerf also provides performance log as well as 
transactional dump, with debugging information embedded in 
it, out of the interface signals.  SysPerf can also be executed on 
the simulation dump produced post-simulation to extract 
performance log and transactional database for debugging. 

 
Fig. 9. Simvision display of fifo_analysis.vcd 



 

Fig. 10. performance figures produced by SysPerf 

The probing tool extracts performance log as shown in Fig. 
11 from the simulation.vcd file. The average Bandwidth 
obtained from the first simulation run of SoC BCA models 
when compared with actual SoC RTL simulation shows a 
relative error of 6.74%. This reflects a very high accuracy as 
compared to spreadsheet analysis or high level C++ simulation 
results. It is essential to correlate the predicted performance 
with real performance figures measured on the silicon device 
refine the models later. SysPerf tool also provides rough 
estimates of power figures in text format and VCD file  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Performance log 

 

Fig. 12. Transactional database produced out of signals for debugging 

associated with communication phase of IP as shown in Table 
I. The total power consumed at any instance of time is the sum 
of the power consumed by both the threads as shown in Fig. 
13. From the results it was educated that the core used 
considerable power while doing read operations. 

TABLE I.  ROUGH POWER DISSIPATED WITH COMMUNICATION PHASES 

PHASE POWER DISSIPATED 

IDLE 
NOP 
COMPUTE 
READ 
WRITE 

0.145280W                         
0.3W                                
0.7W                                
0.4W                                
0.009999999983W        

 

 

Fig. 13. Power Estimation Flow 

PERFORMANCE LOG 
Simulation duration:     189700000 fs  
Clock period:                     10000000 fs  
AXI3 Frequency:               100 Mhz  

LATENCY 
Name   Min    Max     Avg 
awvalid to awready  0       0        0  
arvalid to arready  45      45      45 
 rvalid to reready    5       5             5   

AXI3 PIPELINE 
Name                 Min      Max     Avg  
Burst Pipeline    2         2        2  
Beat Pipeline                 4                  4        4  

AXI3 OPCODE TABLE 
Opcode_table with byte Enable  
Load 1 Byte (1 bytes *3)    =   3 bytes(0.68%) 
Store 1 Byte (1 bytes *2)    =   2 bytes(0.45%) 
Load 2 Bytes(2 bytes *11)         =   22 bytes(5%) 

      ………..  
Number of Bytes Stored               443 

BANDWIDTH 
Max. Available Bandwidth               40MB/s 
Min. Available Bandwidth               8 MB/s 



VI. SIMULATION RESULTS ANALYSIS  

The performance simulation step helps to identify and 
analyse major issues in the interconnect design, some of the 
experiences from interconnect design and performance 
simulations of VISTA SOC have been captured in this section.  

a) Impact of “reducing latency on processor path” 

As shown in Fig. 14 and Fig. 15, the small change of 
replacing the “Fconv” (frequency converter) with buffer gives 
an improvement of around 28 cycle’s latency (14%) which is 
significant as it falls in the processor path. Note that, there was 
a constraint of “no frequency above 266 MHz at top level” in 
this SOC. If this constraint could be changed to higher 
frequencies, better latency numbers are possible. 

b) Impact of “change in Topology” 

The interconnect topology plays an important role in 
system performance and how fast we can arrive at the final 
working arbitration policies/tuning. The Node (Bus 
component) provides several kind of arbitration policies like, 
fixed priority by position, programmable fixed priority, Least 
recently used (LRU), bandwidth limiters etc. The LRU 
scheme ensures that all the initiators connected to the node get 
the “equal” share of bandwidth. “Equal” is not always “Fair” 
for a system like TV where there are numerous IP’s with 
different bandwidth requirements. Selecting the right 
arbitration policy and tuning becomes a very tedious and time 
consuming step if the SOC interconnect is big. From number 
of iterations of performance simulations it was observed that it 
is better to identify IP’s with similar bandwidth requirements 
and club them together (and put LRU arbitration scheme). 
Another major concern is the latencies for the Processors 
paths. Analysis and tuning of interconnect becomes very 
difficult if the packets coming from other initiators clients 
mixed with the processor transactions. There can be issues 
where packets from the processors cannot pass faster just 
because there are packets from other clients still waiting in 
interconnect. Tuning for arbitration at different levels in 
interconnects become very complicated. It was therefore 
observed that, for best results we should arbitrate the 
processor paths with other clients “as late as possible” as 
shown in Fig. 16 and Fig. 18. 

 
Fig. 14. Initial implementation(Total round trip latency i.e. for “req” to 

“r_eop” 188 cycles of 450 MHz clk (average)) 

c) Impact of “outstanding requests capability of IPs” 

As the SOC complexity increases, the system latencies 
also grow proportionally. If an IP’s capability to generate 
outstanding requests is limited, there is a direct impact on how 
much BW the IP can get to access the memory resources. If 
the IP is able to launch multiple outstanding requests into 
interconnect, the impact of high latencies are compensated. On 
running performance simulations for the SOC it was 
discovered that the 3D graphics IP was not hitting its 
bandwidth requirement. On further analysis it was observed 
that it is able to generate only one outstanding (each for RD 
and WR). As the IP generated LD/ST32’s and the system 
average latency was around 200 cycles @ 200 MHz. So the 
maximum BW possible is 64 MB/s. Even if the Interconnect 
and DDR subsystem are able to sustain much larger 
bandwidths (in the range of GB/s); the IP could not utilize it 
effectively. Even if we tune/modify the interconnect/DDR 
controller and reduce the latency by half still the maximum 
achievable BW will be around 128 MB/s which is way behind 
what is expected. IP in the standalone could do much faster as 
the latency in the standalone environment is very low. But in a 
complex SOC for TV applications, it is impossible to achieve 
very low latency numbers for all IP’s. So the only solution is 
to modify the IP to be able to launch more outstanding 
(increasing its internal pipe capability). 

d) Impact of “space between requests” 

IP’s which have an average kind of BW requirement can 
have their requests spread out so that it is beneficial for the 
system BW. it is better if such IPs does not generate a “Peaky” 
b/w when all the blocks in the SOC are active. To achieve this, 
the requests generated by such IPs are “spaced” by a 
programmable parameter. Note that, this parameter need to 
change when the load on the DDR BW changes. The optimum 
value for this parameter can be derived only after running 
performance simulations for different use cases.  

VII. FURTHER WORK  

Migration of developed toolset for advanced interconnect 
architectures like ARM AMBA4 (ACE) is in progress with a 
completed automated flow. Efforts are being made to leverage 
the advantages of IPXACT standard to automate the flow from 

 

Fig. 15. corrected implementation (Total round trip latency i.e. for “req” to 
“r_eop” 160 cycles of 450 MHz clk (average)) 



 

Fig. 16. Initial Design 

IP data sheet to behaviour models. Migrating to TLM 2.0 
standard might be a further step to introduce interoperability 
of models with similar models from other vendors. 

VIII. CONCLUSION 

As the complexity of modern SOCs is increasing, the 
bandwidth estimation and analysis is becoming more and 
more complicated. Conventional methods of spreadsheet 
analysis are necessary but not sufficient to predict the system 
behaviour, more specifically in modern SOC which 
implements various kinds of functionalities which generate 
different kinds of traffic in the system. The proposed 
methodology for performance evaluation along with debug 
features embedded has several advantages, as shown in Fig. 
17, over existing solutions like Emulation, RTL etc can be 
conveniently adopted in early SOC design phase.  

 

 
Fig. 17. Comparison of proposed methodology with existing flows 
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